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Eudoxus Meets Cayley

Richard E. Chandler, Carl D. Meyer, and Nicholas J. Rose

1. INTRODUCTION. The uses of geometry stretch back to the dawn of human
history. The earliest written records (from Egypt and Babylonia) contain geometric
observations, problems, and solutions. During the classical Greek civilization in the
period 600–300 BCE geometry was organized and systemized into what we view to-
day as formal mathematics, culminating in Euclid’s Elements. By this time mathemat-
ics had encountered and resolved its first crisis, as identified by Eves [1, pp. 15–16]:
the discovery of irrational numbers (in the fifth century BCE) and the consequent inval-
idation of all proofs that depended on the assumption that any two lengths were com-
mensurable. When Euclid wrote the Elements he was able to incorporate (as Book 5)
Eudoxus’s brilliant resolution of the crisis through the development of proportional
lengths and similar triangles.

It would be difficult to overstate the impact that this first textbook of axiomatic
mathematics had on Western civilization. Everyone with a formal education learned
Euclid. It is clear from its organization and presentation that Thomas Jefferson and
the other writers of The Declaration of Independence knew the Elements. Abraham
Lincoln, in the autobiographical sketch he wrote for the Chicago Press & Tribune
when he ran for President in 1860, stated that “He studied and nearly mastered the six
books of Euclid, since he was a member of Congress.” Archimedes, Newton, Gauss,
and the other giants of mathematics were masters of geometry. Thus it is with some
trepidation that we present this article.

We begin with a few elementary results from classical geometry that Eudoxus and
Euclid could certainly have understood. These results naturally lead to a question that
is also easily understood in the framework of classical geometry. It is in searching for
the answer to this question that we are led into the mathematics of Cayley.

2. TRIANGLE AND SUBTRIANGLES. Conventionally, the triangle �ABC is the
union of its sides: the noncollinear segments between A and B, B and C , and C and
A, respectively. A chord of �ABC is any segment whose end points are interior points
of different sides. We call the point X on the segment between A and B for which the
ratio AX :XB = p :q, where p and q are natural numbers, the (p :q)-point from A to B.
Note the asymmetry of this definition: the (p :q)-point from A to B is the (q : p)-point
from B to A. If X is the (p :q)-point from A to B and Y is the (p :q)-point from A
to C , then the segment XY is called the (p :q)-chord from A in �ABC. It is an easy
exercise in similarity arguments to prove the following.

Theorem 2.1. The (2 :1)-chords from A, from B, and from C in �ABC all have the
centroid of �ABC as midpoint. Consequently, these three chords are concurrent (share
a common point).

We are interested in properties of subtriangles, so to facilitate the development we
adopt the following terminology and notation.

Definition 2.1. In �A0 B0C0 let A1, B1, and C1 be the (p :q)-points from A0 to B0,
from B0 to C0, and from C0 to A0, respectively. Triangle �A1 B1C1 is called the
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(p :q)-subtriangle of �A0 B0C0 (see Figure 1). If �A1 B1C1 is the (p :q)-subtriangle
of �A0 B0C0 and if �A2 B2C2 is the (p :q)-subtriangle of �A1 B1C1, then �A2 B2C2

is called the (p :q)2-subtriangle of �A0 B0C0. This is extended inductively in the ob-
vious way to define the (p :q)k-subtriangle of �A0 B0C0 for any natural number k.

A0

A1

B0

B1

C0

C1

D0

D1

E1
O

Figure 1.

Theorem 2.2. The (2 :1)-chord from A0 in the triangle �A0 B0C0 contains the median
from C1 in �A1 B1C1, its (1 :2)-subtriangle. Dually, the median from A0 in �A0 B0C0

contains the (2 :1)-chord from C1 in �A1 B1C1. Analogous results hold for the appro-
priate other chords and medians. Consequently, the centroids of both triangles coin-
cide.

Proof. Let D1 be the (2 :1)-point from A0 to B0. To see that the segment C1 D1 bisects
the segment A1 B1 is another easy exercise in similarity. Thus the first statement fol-
lows. Next, if D0 is the midpoint of the segment B0C0, and O is the intersection of
segment A0 D0 and segment C1 D1, it is the centroid of �A0 B0C0 by Theorem 2.1. An-
other application of the first part of this theorem (at the vertex B0, say) shows that O
is also the centroid of �A1 B1C1. Moreover, if E1 is the intersection of segment A1 B1

and segment C1 D1, then C1 O : O E1 = 2 :1 (because O is the centroid of �A1 B1C1).
It follows that the segment A0 D0 contains the (2 :1)-chord from C1 in �A1 B1C1.

There is a more general result for part of this theorem—see Theorem 3.1. One of
the classical results in geometry is that the (1 :1)-subtriangle of �ABC is similar to
�ABC. In a similar vein (but rather more difficult to prove) we have the following.

Theorem 2.3. The (1 :2)2-subtriangle of �A0 B0C0 is similar to �A0 B0C0.

Proof. (See Figure 2.) By Theorem 2.2, the (2 :1)-chord from B2 in �A2 B2C2 is a
subsegment of the (2 :1)-chord from A0 in �A0 B0C0, and the analogous statement
holds for the other (2 :1)-chords. From this it follows that the line containing A2 and
C2 is parallel to the line containing B0 and C0, etc. Again by appeal to Theorem 2.2,
the median B2 D2 in �A2 B2C2 is a subsegment of the median A0 D0 of �A0 B0C0, so
that �A0 B0 D0 ∼ �B2C2 D2 and �A0C0 D0 ∼ �B2 A2 D2 (The line containing A0 and
D0 is a transversal between three pairs of parallel lines.) Consequently �A0 B0C0 ∼
�B2C2 A2.
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Figure 2.

3. A MATRIX THEORY VIEW. The preceding arguments are purely geometric:
Euclid himself would have had no difficulty understanding them. We know that the
(1 :1)1-subtriangle and the (1 :2)2-subtriangle of �ABC are both similar to �ABC.
This naturally suggests:

The Question. Is the (1 :n)n-subtriangle of �ABC similar to �ABC for each nat-
ural number n?

To answer this we leave Euclid (and Eudoxus) behind and move forward to mathemat-
ics that Cayley would have understood.

The Cartesian plane is a model for Euclidean geometry. Thus a theorem in Eu-
clidean geometry will be true in the Cartesian plane, and (contrapositively) a state-
ment that is false in the Cartesian plane will not be true in Euclidean geometry. In the
Cartesian plane we can represent �A0 B0C0 by a 3 × 2 matrix

T0 =
(

xa ya

xb yb

xc yc

)
, (3.1)

where the rows a0 = (xa, ya), b0 = (xb, yb), and c0 = (xc, yc) of T0 are the respective
coordinates of A0, B0, and C0. We can then obtain T1, the coordinate matrix for the
(p :q)-subtriangle of �A0 B0C0, by matrix multiplication T1 = ST0, where

S = 1

p + q

(
q p 0
0 q p
p 0 q

)
. (3.2)

More generally,

Tk = SkT0 (3.3)

is the (p :q)k-subtriangle of �A0 B0C0. Using this we can prove the following more
general result for part of Theorem 2.2.

Theorem 3.1. A triangle �A0 B0C0 and its (p :q)-subtriangle �A1 B1C1 have a com-
mon centroid for all natural numbers p and q.
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Proof. If ai , bi , and ci are the respective coordinates of Ai , Bi , and Ci for i = 0, 1,
then ( a1

b1

c1

)
= 1

p + q

(
q p 0
0 q p
p 0 q

)( a0

b0

c0

)
= 1

p + q

(
q a0 + p b0

q b0 + p c0

q c0 + p a0

)
,

so

a1 + b1 + c1

3
= a0 + b0 + c0

3
.

This establishes the theorem, because the centroid χ of the triangle defined by T0 is

χ = a0 + b0 + c0

3
. (3.4)

This is an exercise in many calculus texts, but it is also a consequence of the result in
classical geometry stating that the centroid is the point on any median that is two-thirds
the distance to the midpoint of the opposite side. As a result, the centroid is given by

a0

3
+

(
2

3

) (
b0 + c0

2

)
= a0 + b0 + c0

3
.

Taking p = 1 and q = 2 gives us the following alternate way to prove Theorem 2.3,
which is valid in the Cartesian plane.

Alternate proof of Theorem 2.3. The coordinates for the (1 :2)2-subtriangle �A2 B2C2

in �A0 B0C0 are obtained as( a2

b2

c2

)
= S2T0 = 1

9

(
4 4 1
1 4 4
4 1 4

)( a0

b0

c0

)
= 1

9

(
4a0 + 4b0 + c0

a0 + 4b0 + 4c0

4a0 + b0 + 4c0

)
.

Consequently,

‖a2 − b2‖ = ‖c0 − a0‖
3

, ‖b2 − c2‖ = ‖a0 − b0‖
3

, ‖c2 − a2‖ = ‖b0 − c0‖
3

,

and thus �A0 B0C0 ∼ �B2C2 A2.

We return to the question of whether the (1 :n)n-subtriangle of �ABC is similar
to �ABC for each natural number n. Drawings using Geometer’s Sketchpad seem
to support this idea. Unfortunately, careful analysis using Maple shows that it is not
correct—the (1 :n)n-subtriangle is generally not similar to the original triangle when
n > 2.

While our experiments uncovered the flaw in the conjecture, they prompted us to
question the limiting behavior of (p :q)-subtriangles. For example, we can succes-
sively build (p :q)-subtriangles for which the ratio p/q remains fixed at each iteration,
or we can fix p and allow q to vary at each step. Both of these limiting processes pro-
duce interesting results. Examination of the structure of the matrix S in (3.2) reveals
that these problems are really questions concerning the limiting behavior of stochas-
tic matrices, and thus limiting properties of (p :q)-subtriangles carry us deeper into
matrix theory.
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4. SUBTRIANGLES AND STOCHASTIC MATRICES. We examine the limiting
behavior of (p :q)-subtriangles by means of the equation Tk = SkT0, where T0 and S
are as defined in (3.1) and (3.2). To this end, it is helpful to recall some facts concerning
stochastic matrices.

Stochastic matrices: a quick review. Let S be a stochastic matrix—i.e., S is a square
matrix such that S ≥ 0 (entrywise) and each row sum of S is 1. We will make use the
following features of stochastic matrices. See Meyer [3, chap. 8] for proofs and more
detailed discussions.

• S is doubly stochastic if each column sum (in addition to each row sum) is 1.
• S is irreducible whenever there is no permutation matrix Q such that

QT SQ =
(

X Y
0 Z

)
,

where X and Z are square matrices.
• If u is a column vector of ones, then Su = u, so (1, u) is an eigenpair for S.
• All eigenvalues of S are contained in or on the unit circle in the complex plane.
• S is primitive when S is irreducible and λ = 1 is the only eigenvalue of S on the unit

circle.
• S is primitive if and only if Sk > 0 for some positive integer k. (4.1)
• If Sm×m is primitive, then limn→∞ Sn exists and is given by

lim
n→∞ Sn = xyT

yT x
,

where x and y are respective right-hand and left-hand eigenvectors for S that are
associated with the eigenvalue 1. If S is doubly stochastic, then

lim
n→∞ Sn = 1

m
uuT = 1

m


 1 1 · · · 1

...
... · · · ...

1 1 · · · 1


 . (4.2)

We first consider the limiting nature of the (p :q)k-subtriangles of �A0 B0C0 when
the ratio p/q is fixed. This case is fairly intuitive, and most of us would guess the
correct answer (especially after Theorem 3.1).

Theorem 4.1. If p/q is fixed, then starting with �A0 B0C0 the sequence {�Ak BkCk}∞
k=0

of (p :q)k-subtriangles converges to the centroid of �A0 B0C0.

Proof. The coordinates of the vertices of �Ak BkCk are given by the rows of Tk =
SkT0, where S is the doubly stochastic matrix given in (3.2) and T0 is as described
in (3.1). Since S2 > 0, it follows from (4.1) that S is primitive, and consequently (4.2)
guarantees that

lim
k→∞

Sk = 1

3

(
1 1 1
1 1 1
1 1 1

)
.

916 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110



Integre Technical Publishing Co., Inc. American Mathematical Monthly 110:10 August 20, 2003 9:54 a.m. meyer.tex page 917

As pointed out in (3.4), the centroid χ of the triangle defined by

T0 =
( a0

b0

c0

)

is given by

χ = a0 + b0 + c0

3
,

so the coordinates of the vertices of the limiting (p :q)-subtriangle are obtained from

lim
k→∞

Tk = lim
k→∞

SkT0 = 1

3

(
1 1 1
1 1 1
1 1 1

)( a0

b0

c0

)
=

(
χ
χ
χ

)
.

If p/q is not fixed, then the limiting behavior of the sequence �Ak BkCk of
(p :q)k-subtriangles is more interesting. In particular, the sequence �Ak BkCk need
not converge to the centroid of �A0 B0C0—in fact, the limit is not necessarily a point.
For example, when p = 1 and q = n, the limit of the (1 :n)n-subtriangles as n → ∞
is a triangle. This is illustrated in Figure 3 for n = 5, n = 10, and n = 50.

(1 :5)5 (1 :10)10 (1 :50)50

Figure 3.

The limit that is suggested by Figure 3 has a surprisingly elegant representation.

Theorem 4.2. If T0 is the coordinate matrix of �A0 B0C0 as described in (3.1) and if
Tn is the coordinate matrix for the (1 :n)n-subtriangle, then the coordinate matrix for
the limiting triangle is limn→∞ Tn = eP−IT0, where

P =
(

0 1 0
0 0 1
1 0 0

)
.

Proof. It follows from (3.2) and (3.3) that

lim
n→∞ Tn = lim

n→∞ SnT0,

where

S = 1

n + 1

(
n 1 0
0 n 1
1 0 n

)
= n

n + 1

(
I + P

n

)
.
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Since n/(n + 1) = 1/(1 + n−1) and limn→∞(1 + n−1)n = e, it follows that[
n

n + 1

]n

→ e−1.

Furthermore, matrix limits act the same as scalar limits insofar as the exponential
function is involved, so limn→∞(I + P/n)n = eP. Consequently

lim
n→∞ Sn = lim

n→∞

(
n

n + 1

)n

lim
n→∞

(
I + P

n

)n

= e−1eP = eP−I.

Explicitly producing the coordinates of the limiting subtriangle requires evaluation
of the matrix exponential eP−I = e−1eP. The standard approach is to diagonalize P
with a similarity transformation F−1PF = D, which in our case is the Fourier matrix
of order three

F =
(

1 1 1
1 λ λ2

1 λ2 λ4

)
,

where

λ = −1

2
+

√
3

2
i, F−1 = (1/3)F, D =

(
1

λ

λ

)
(4.3)

(see Meyer [3, pp. 357, 379]). However, a more elementary approach to computing
eP−I is presented in section 7. It is more straightforward than diagonalization and better
suits our purposes (explicit formulas are given section 7).

Returning to triangles, consider now the limiting behavior of the (p :q)q -subtriangles
when p is fixed and q → ∞. For example, fixing p = 2, we depict the situations for
q = 5, q = 10, and q = 50 in Figure 4.

(2 :5)5 (2 :10)10 (2 :50)50

Figure 4.

It is not clear from these drawings if the limit is a point or a triangle, but the same
technique used to prove Theorem 4.2 generalizes to produce the answer.

Theorem 4.3. Let T0 be the coordinate matrix of �A0 B0C0 as described in (3.1),
and let p be a fixed natural number. If Tq is the coordinate matrix for the (p :q)q -sub-

918 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 110



Integre Technical Publishing Co., Inc. American Mathematical Monthly 110:10 August 20, 2003 9:54 a.m. meyer.tex page 919

triangle, then the coordinate matrix for the limiting triangle is limq→∞ Tq = ep(P−I)T0,
where

P =
(

0 1 0
0 0 1
1 0 0

)
.

Proof. Just as in the case of Theorem 4.2, write limq→∞ Tq = limq→∞ SqT0, but now
use

S = q

p + q

(
I + p

q
P
)

,

and note that

lim
q→∞

(
q

p + q

)q

= e−p, lim
q→∞

(
I + p

q
P
)p

= epP.

As mentioned earlier, the (1 :n)n-subtriangle is generally not similar to the original
triangle �A0 B0C0 when n > 2. Expressions given in section 7 can be used to verify
that the same is true for the limiting case as well, and analogous statements hold for
the subtriangles in Theorem 4.3. However, if a (p :q)-subtriangle is followed by a
(q : p)-subtriangle, then an elegant similarity result is possible.

Theorem 4.4. The (q : p)(p :q)-subtriangle (obtained by constructing the (q : p)-sub-
triangle of the (p :q)-subtriangle of �A0 B0C0) is similar to �A0 B0C0.

Proof. Let T0 be the coordinate matrix for �A0 B0C0. If S denotes the product

S = 1

(p + q)2

(
p q 0
0 p q
q 0 p

)(
q p 0
0 q p
p 0 q

)
(4.4)

= 1

(p + q)2

(
pq p2 + q2 pq
pq pq p2 + q2

p2 + q2 pq pq

)
,

then the coordinate matrix T2 for the (q : p)(p :q)-subtriangle is( a2

b2

c2

)
= T2 = ST0 = 1

(p + q)2

(
pq p2 + q2 pq
pq pq p2 + q2

p2 + q2 pq pq

)( a0

b0

c0

)
.

For ξ = (p2 − pq + q2)/(p + q)2, it is apparent that

‖a2 − b2‖ = ξ‖b0 − c0‖, ‖b2 − c2‖ = ξ‖a0 − c0‖, ‖c2 − a2‖ = ξ‖a0 − b0‖,
so �A0 B0C0 ∼ �C2 A2 B2.

The iterated sequence of (q : p)(p :q)-subtriangles has a simple limit.

Theorem 4.5. The sequence obtained by iteratively constructing (q : p)(p : q)-sub-
triangles converges to the centroid of the original triangle �A0 B0C0.

Proof. Let S be the matrix given in (4.4), and notice that S is a doubly stochastic
matrix. Application of (4.2) yields
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lim
n→∞ Sn = 1

3

(
1 1 1
1 1 1
1 1 1

)
,

which means that

lim
n→∞ Tn = lim

n→∞ SnT0 = 1

3

(
1 1 1
1 1 1
1 1 1

)( a0

b0

c0

)
=

(
χ
χ
χ

)
,

where χ = (a0 + b0 + c0)/3.

5. GENERALIZATIONS. An interesting generalization occurs by considering a se-
quence of subtriangles where at the nth stage we use a ratio of (1 : f (n)), where f is
a (natural number valued) function of n. Beginning with a triangle whose coordinate
matrix is T0, successively generate subtriangles with coordinate matrices Tn in which
Tn = SnTn−1, where

Sn = 1

f (n) + 1

(
f (n) 1 0

0 f (n) 1
1 0 f (n)

)
= 1

f (n) + 1

(
f (n)I + P

)
.

If a limiting triangle exists, what is its coordinate matrix? The solution is conceptu-
ally straightforward because each Sk is diagonalized by the same matrix, namely, the
Fourier matrix of order 3 given in (4.3). Specifically,

F−1SkF = Dk = 1

f (k) + 1

(
f (k)I + D

)
,

where

D =
(

1
λ

λ

)
, λ = −1

2
+

√
3

2
i.

Consequently,

Tn =
n∏

k=1

SkT0 = F

(
n∏

k=1

Dk

)
F−1T0 = F


 1 ∏n

k=1
f (k)+λ

f (k)+1 ∏n
k=1

f (k)+λ

f (k)+1


 F−1T0,

so the question boils down to analyzing the limits

lim
n→∞

n∏
k=1

f (k) + λ

f (k) + 1
, lim

n→∞

n∏
k=1

f (k) + λ

f (k) + 1
. (5.1)

Existence of these limits is resolved by writing

f (k) + λ

f (k) + 1
= 1 + ak,

where ak = (λ − 1)/( f (k) + 1), and by applying the result from classical analysis that
states that

∏∞
k=1(1 + ak) is absolutely convergent if and only if

∑∞
k=1 ak is absolutely
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convergent (see Whittaker and Watson [4, p. 32]). It is remarkable that not only can
the existence of the limit be guaranteed for some cases, but in fact the limit can be
evaluated.

Example 5.1. If f (n) = n for n > 1, then the limiting (1 :n)-subtriangle of �A0 B0C0

is the centroid.

Proof. The limit in (5.1) becomes

lim
n→∞

n∏
k=1

k + λ

k + 1
= lim

n→∞

n∏
k=1

k

k + 1

(
1 + λ

k

)
.

It can be seen that this limit evaluates to zero by observing that

∣∣∣∣1 + λ

k

∣∣∣∣
2

=
(

1 + λ

k

)(
1 + λ

k

)
= 1 − 1

k
+ 1

k2
< 1,

from which we infer that∣∣∣∣∣
n∏

k=1

k + λ

k + 1

∣∣∣∣∣ <

n∏
k=1

(
k

k + 1

)
= 1

2
· 2

3
· 3

4
· · · n

n + 1
= 1

n + 1
→ 0.

Accordingly,

lim
n→∞ Tn = F

(
1

0
0

)
F−1T0 = 1

3

(
1 1 1
1 1 1
1 1 1

)( a0

b0

c0

)
=

(
χ
χ
χ

)
.

Example 5.2. If f (n) = nx , where x > 1 is an integer, then the limiting (1 : nx)-
subtriangle of �A0 B0C0 is a triangle whose coordinates can be computed as follows.
Results concerning the gamma function from Whittaker and Watson [4, pp. 238–
239] ensure that, if {λ1, λ2, . . . , λx} are the x th roots of −λ = 1/2 − (

√
3/2)i and

{ν1, ν2, . . . , νx} are the x th roots of −1, then

∞∏
n=1

nx + λ

nx + 1
=

x∏
i=1

�(1 − νi)

�(1 − λi)
.

Explicit evaluation is possible for the case x = 2 by making use of the identity

�(1 + z)�(1 − z) = πz

sin(πz)

to write

∞∏
n=1

n2 + λ

n2 + 1
= �(1 − i)�(1 + i)

�(1 − (
√

3 + i)/2)�(1 + (
√

3 + i)/2)

= sinh(λπ)

λ sinh(π)
≈ −.01406 − .20190i.
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6. SUPERTRIANGLES. Instead of restricting ourselves to internal points of divi-
sion of the sides of a triangle we can consider external divisions of the (extended)
sides of a triangle.

Definition 6.1. Let p and q be positive integers. If p < q, the (−p :q)-point (= the

(p :−q)-point) X on the line
←→
AB is the point such that A is between X and B and

X A : X B = p :q (note that p < q, since the distance X A is always less than X B). If

p > q, the (−p :q)-point (= the (p :−q)-point) on the line
←→
AB is the point Y such that

B is between A and Y and AY : BY = p :q (note that p > q, since the distance AY is

always greater than BY). The (−p :q)-point of
←→
AB is the same as the (−q : p)-point

of
←→
B A.

AX B Y

X = (–1:2)-point Y = (–3:1)-point

Definition 6.2. In triangle �A0 B0C0, let A1, B1, and C1 be the (−p : q)-points of←−→
A0 B0,

←−→
B0C0, and

←−→
C0 A0, respectively. Triangle �A1 B1C1 is the (−p :q)-supertriangle

of �A0 B0C0, and the (−p :q)-supertriangle of �A1 B1C1 is called the (−p : q)2-
supertriangle of �A0 B0C0. Iterating this concept defines the (−p :q)k-supertriangle.

For example, the (−1 :3)-supertriangle is shown in Figure 5.

�A0 B0 C0

�A1 B1 C1

Figure 5. (−1 :3)-Supertriangle.

If T0 is the coordinate matrix of �A0 B0C0 as presented in (3.1), the coordinate
matrix of the (−p :q)-supertriangle is given by T1 = RT0, where

R = 1

q − p

(
q −p 0
0 q −p

−p 0 q

)
. (6.1)

It is easy to prove the following analogue Theorem 3.1.

Theorem 6.1. A triangle �A0 B0C0 and its (−p : q)-supertriangle �A1 B1C1 share
the same centroid.
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Following the same procedure as in section 4, we consider what happens to the
sequence of (−p :q)k-supertriangles for fixed p/q as k → ∞.

Theorem 6.2. Start with an initial triangle �A0 B0C0, and let p/q be fixed. The se-
quence of (−p :q)k-supertriangles grows without limit.

Proof. We need to investigate what happens to Rk as k → ∞, where R is the matrix
in (6.1). The eigenvalues of R are 1 and

−q + (−1 ± √
3i)(p/2)

q − p
.

Because q − p ≥ 1, it is easy to see that the complex eigenvalues have absolute value
greater than 1, which implies that Rk becomes unbounded as k → ∞.

We now turn to analyzing what happens to the (−1 :n)n-supertriangles as n → ∞.
As seen in Figure 6, experiments suggest that there will be a limiting supertriangle.

�A0 B0 C0

(−1 :10)10 (−1 :50)50

Figure 6.

Recall from Theorem 4.2 that, if T0 is the coordinate matrix of an initial triangle,
then the coordinate matrix for the limiting (1 :n)n-subtriangle is limn→∞ Tn = eP−IT0.
It is interesting (and rather surprising) that the limiting (−1 :n)n-supertriangle is es-
sentially given by the inverse of the limiting (1 :n)n-subtriangle. To be specific, the
following is true.

Theorem 6.3. If T0 is the coordinate matrix of �A0 B0C0 and if Tn is the coordi-
nate matrix for the (−1 :n)n-supertriangle, then the coordinate matrix for the limiting
triangle is limn→∞ Tn = eI−P T0, where

P =
(

0 1 0
0 0 1
1 0 0

)
.

Proof. We have limn→∞ Tn = limn→∞ RnT0, where

R = 1

n − 1

(
n −1 0
0 n −1

−1 0 n

)
.
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Moreover,

lim
n→∞ Rn = lim

n→∞

(
n

n − 1

)n

lim
n→∞

(
I − P

n

)n

= ee−P = eI−P.

Example 6.1. As n → ∞, the limiting triangle of the (−1 :nx)n-supertriangles for
any positive integer x > 1 can be obtained in a manner similar to that used in (5.1) and
Example 5.2. In particular, if

Sk = 1

kx − 1
(kx I − P) (k > 1),

then the coordinate matrix for the (−1 :nx)n-supertriangle is

Tn =
n∏

k=2

SkT0 = F

(
n∏

k=2

Dk

)
F−1T0 = F


 1 ∏n

k=2
kx −λ

kx −1 ∏n
k=2

kx −λ

kx −1


 F−1T0,

so the question boils down to evaluating the products

�x =
∞∏

k=2

kx − λ

kx − 1
, �x =

∞∏
k=2

kx − λ

kx − 1
, (6.2)

where λ = −1/2 + i
√

3/2. For j = 1, 2, . . . , x let λ j denote the x th roots of λ, and
let α j be the x th roots of unity. If a �= 1 is a positive real number, then the x th roots of
a are given by α′

j = x
√

a α j . If we set

�x(a) =
∞∏

k=1

kx − λ

kx − a
= �(1 − α′

1)�(1 − α′
2) · · ·�(1 − α′

x)

�(1 − λ1)�(1 − λ2) · · ·�(1 − λx)
,

G = �(1 − α′
2) · · ·�(1 − α′

x)

�(1 − λ1) · · ·�(1 − λx)
,

then continuity of the gamma function along with �(1 + z)�(1 − z) = πz/ sin(πz)
yields

�x = lim
a→1

1 − a

1 − λ
�x(a) = lim

a→1

(
1 − a

1 − λ

)(
1 + α′

1

1 + α′
1

)
�x(a)

= lim
a→1

(
1 − a

1 − λ

)(
π x

√
a

sin(π x
√

a)

)(
1

�(1 + x
√

a)

)

= lim
a→1

(
π x

√
a

1 − λ

)(
1 − a

sin(π x
√

a)

)(
1

�(1 + x
√

a)

)
G

=
(

π

1 − λ

)( −1

x−1π(−1)

)
G =

(
x

1 − λ

)
G.

Here L’Hôpital’s rule is used to evaluate lima→1(1 − a)/ sin(π x
√

a). For example,
when x = 2 we have

�2 = (3 − √
3i) cosh(π

√
3/2)

3π
,

and the limiting (−1 :n2)n-supertriangle �A∞ B∞C∞ is shown in Figure 7.
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�A0 B0 C0

�A B∞ ∞C

�A 10 B 10 C 10

∞

Figure 7. The limiting (−1 :n2)n-supertriangle.

7. EVALUATION OF EXPONENTIALS AND SERIES. In Theorems 4.2, 4.3, and
6.3, the limiting triangles were determined by a matrix exponential of the form ep(P−I),
where

P =
(

0 1 0
0 0 1
1 0 0

)

and p is a scalar. As shown in what follows, these exponentials are easily evaluated,
and thus explicit formulas for the coordinate matrices for the limiting triangles in The-
orems 4.2, 4.3, and 6.3 are produced. To compute epP simply note that the periodicity
of P ensures that

epP = α0I + α1P + α2P2,

where

α0 =
∞∑
j=0

p3 j

(3 j)! , α1 =
∞∑
j=0

p3 j+1

(3 j + 1)! , α2 =
∞∑
j=0

p3 j+2

(3 j + 2)! . (7.1)

For the cube root of unity λ = −1/2 + i
√

3/2, use ep = α0 + α1 + α2 together with
the real and imaginary parts of epλ = α0 + α1λ + α2λ

2 to produce the 3 × 3 linear
system (

1 1 1
1 −1/2 −1/2
0

√
3/2 −√

3/2

)(
α0

α1

α2

)
=

(
ep

e−p/2 cos(p
√

3/2)

e−p/2 sin(p
√

3/2)

)
,

which is easily solved by inverting the coefficient matrix. The solution is

(
α0

α1

α2

)
= 1

3


ep + 2e−p/2 cos(p

√
3/2)

ep − e−p/2 cos(p
√

3/2) + e−p/2
√

3 sin(p
√

3/2)

ep − e−p/2 cos(
√

3/2) − e−p/2
√

3 sin(
√

3/2)
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= 1

3


ep + 2e−p/2 cos(p

√
3/2)

ep + 2e−p/2 sin(p
√

3/2 − π/6)

ep − 2e−p/2 sin(p
√

3/2 + π/6)


 ,

so that

ep(P−I) = e−p
(
α0I + α1P + α2P2

) = 1

ep

(
α0 α1 α2

α2 α0 α1

α1 α2 α0

)
= 1

3

(
1 1 1
1 1 1
1 1 1

)
(7.2)

+ 2e−3p/2

3

(
cos(p

√
3/2) sin(p

√
3/2 − π/6) − sin(p

√
3/2 + π/6)

− sin(p
√

3/2 + π/6) cos(p
√

3/2) sin(p
√

3/2 − π/6)

sin(p
√

3/2 − π/6) − sin(p
√

3/2 + π/6) cos(p
√

3/2)

)
.

Consequently, we can make the following observations.

Theorem 7.1.
• Setting p = 1 in (7.2) yields the coordinate matrix of the limiting (−1 : n)n-

supertriangle as described in Theorem 4.2,
• Setting p = −1 in (7.2) produces the coordinate matrix of the limiting

(−1 :n)n-supertriangle as described in Theorem 6.3.
• For each fixed natural number p, formula (7.2) yields the coordinate matrix of

the limiting (p :q)q -subtriangle as described in Theorem 4.3.

As a by-product of the calculation leading to (7.2), explicit formulas for the infinite
series in (7.1) are produced:

∞∑
j=0

p3 j

(3 j)! = ep

3
+ 2 cos(p

√
3/2)

3
√

ep
,

∞∑
j=0

p(3 j+1)

(3 j + 1)! = ep

3
+ 2 sin(p

√
3/2 − π/6)

3
√

ep
,

∞∑
j=0

p(3 j+2)

(3 j + 2)! = ep

3
− 2 sin(p

√
3/2 + π/6)

3
√

ep
.

These can also be found in [2, #803, #804, p. 150].
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